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The H2 Rainbow
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Grey is how we make it today - steam methane reforming — (SMR).
uses SMR, but with CCS.

uses renewable electricity to run electrolysers, which make H2
and O2 from water.

Turquoise is a pyrolysis treatment (chemical decomposition at high
temperatures) of conventional natural gas, which produces H2 and solid

carbon as a by-product.

Gold or White is natural, molecular-free H2 from the Earth
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1. Natural/Gold Hydrogen (H2): a believer or non-believer?
2. Natural H2 in the Pyrenees
- Iberian rotation, Pyrenean orogeny

- Surface H2 seepage in the North Pyrenees

- H2 presence in the South Pyrenees
- Monzén-1 (1963) H2 discovery

3. Conclusions & Implications for SE Asia
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Natural H2: a believer or ndt? -
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Of course it exists! M
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Hundreds of natural H2 seepages
worldwide:

* Chimaeraq, Turkey 2500 years old!

* “Los Fuegos Eternos”discovered 200
yedrs ago

* 1888 earliest published analysis of a
natural gas containing H2!

HOWEVER concept of natural H2
exploration/production is embryonic and
there is neither an exploration strategy
nor any resource-assessment for
targeting natural H2 accumulations.




If still 3 non-believer....
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Does Earth hold vast stores of a renewable, carbon-free fuel?
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The occurrence and geoscience of natural hydrogen: A comprehensive
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Viacheslav Zgonnik

Natural Hydrogen Energy LLC, French branch: 31 rue Raymond Queneau, 92500 Rueil Malmaison, France

ARTICLE INFO ABSTRACT

Keywords: Using an interdisciplinary approach, this paper reviews current knowledge in the field of natural hydrogen. For
Hydrogen the first time, it combines perspectives on hydrogen from the literature of the former Eastern bloc with that of
Natural hydrogen the West, including rare hardcopies and recent studies. Data are summarized and classified in three main sec-
Gas seeps

tions: hydrogen as a free gas in different environments, as inclusions in various rock types, and as dissolved gas

Bt in ground water. This review conclusively demonstrates that molecular hydrogen is much more widespread in
Earthquakes R % 5
Atmosphere nature than was previously thought. Hydrogen has been detected at high concentrations, often as the major gas,

Microorganisms in all types of geologic environment. A critical evaluation of all the proposed mechanisms regarding the origin of

Energy natural shows that a deep- ted origin is the most likely explanation for its abundance in
nature. By combining available data, an estimate of 23 Tg/year for the total annual flow of hydrogen from
geologic sources is proposed. This value is an order of magnitude greater than previous estimate but most likely
still not large enough to account for recently discovered worldwide diffusive seepages. Hydrogen could play a
critical role in mechanisms taking place in both the shallow and deep geospheres and it can influence a very wide
range of natural phenomena. Hydrogen is an essential energy source for many microorganisms. Sampling for
hydrogen can be a useful tool in studying natural environments, geologic mapping, monitering of earthquakes,
plotting fault traces and resource exploration. Hydrogen of geologic origin has the potential to become the
renewable energy source of the future, with exploratory projects ongoing at the present time. The topic of
natural hydrogen is therefore relevant from many different perspectives.

science.org SCIENCE

1. Introduction

“From a geological perspective, hydrogen has been neglected”. This was
written by Nigel Smith and colleagues more than a decade ago in a
2005 paper, which appears to be the latest initiative in a review of
natural hydrogen (Smith et al., 2005). In 2019 this statement still holds
true. [ suspect this is because of an existing prejudice that free hydrogen
in nature is rare, and descriptions of the few known discoveries are
anecdotal and for some reason garner very little notice. Therefore, if no
one expects to find free hydrogen, no one samples for it. This prejudice
influences the way gas samples are analyzed and sampled, but also the
way detection systems are designed. The standard analytical approach
for gas chromatography often uses hydrogen as a carrier gas (Angino
et al., 1984). Because of this, if there is any hydrogen in a gas sample it
will not be detected. It was reported that even in the 1990°s, many
surveys were not equipped to analyze for hydrogen (Smith, 2002). It
still holds true, to this day, that only a few modern portable gas

analyzers used in the natural sciences include a hydrogen sensor in their
design. It is difficult to estimate how many times hydrogen has not been
identified in Hy-rich samples because of the lack of a suitable detection
technique to measure hydrogen concentrations.

For example, hydrogen was not measured (de Boer et al, 2007;
Hosgiirmez, 2007) at a location in Turkey, where it is known to occur
naturally at concentrations of up to 11.3%. The presence of hydrogen at
this location has been confirmed by other studies (Hosgormez et al
2008; Vacquand, 2011). At the location in Turkey, hydrogen rich nat-
ural gas seeps to the surface and burns spontaneously. The flames from
this natural gas seep have been known since antiquity and are believed
to be the source of the first Olympic flame. Another study reporting on
the analysis of gas from Poison bay, New Zealand, did not include hy-
drogen (Lyon and Giggenbach, 1994) as a constituent, though it had
been documented by others (Wood, 1972) to be at concentrations as
high as 75.8%.

In view of the above, gas analyses from databases should be

Abbreviations: BTU, British thermal unit; ¢, concentration; MCFD, Million cubic feet per day; NH, Northern hemisphere; NR, not reported; PSIG, Pounds Per Square
Inch Gauge; Tg, Teragram, equal to 10 gram or 1 million ton.; SH, Southern hemisphere

E-mail address: zgonnik@nh2e.com.

https://doi.org/10.1016/].earscirev.2020.103140
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H2 source/generation

From Hydroma, 2022

Needs water

Radiolysis

Needs water

v

The alteration of ferrommagnesian rocks
(olivines and pyroxenes) that generates
hydrogen from the oxydation reduction of
water, especially in mafic rocks.

Earth's crust ‘s natural radioactivity that
separates hydrogen and oxygen from
water naturally.

Rock crushing
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Rock crushing along fault lines could be
responsible for the generation of
hydrogen gas as H, molecules diffuse out
of freshly fractured mineral surfaces.

Hydrogen stemming from the center of
the earth's crust's (generated during the
formation of the earth's core).

www. hydroma.ca




Natural H2 in the Pyrenees
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Iberia rotates & Pyrenees form
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Various models proposed

All involve Iberian rotation & crustal
extension in Pyrenean region in mid
Cretaceous

Followed by N-S shortening associated
with Africa collision and subsequent uplift
of Pyrenean mountain belt in late
Cretaceous/Tertiary.

Vissers & Meijer (2012) matches the true
geology the best




For H2 the Upper Mantle is key
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From Vissers & Meijer, 2012
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Pyrenees Geology

From Vissers & Meijer, 2012
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North Pyrenees anomalous H2 seepage
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From Lefeuvre et al, 2021
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H2 in the South Pyrenees, Spain L
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Lefeuvre et al (2021) illustrated importance of natural H2 seepage along the North Pyrenean Fault
zone at southern edge of Aquitaine Basin (red). Note the symmetry of location of the Permit area
(blue) on the northern edge of the Ebro Basin in the South Pyrenees.




H2 in existing wells, Ebro Basin, Spain
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H2 in the Monzén-1 Well
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TD 3715m in Triassic Bunter Sandstone

MONZON-1
Bunter Sandstone 56m thick

Overlain by:
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Evaporite bearing Bunter Shale
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Tertiary Continental
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H2 escape vs trapping in the Pyrenees )

HELIOS

ARAGON

\\.h,-/
/"1I‘\

Presence of thick Mesozoic/Tertiary cover sediments in
the South Pyrenees favours H2 trapping compared to

_,‘v’ 0 the North Pyrenees where this cover is largely missing.

South-Pyrenean thrust sheets Axial znne Noth North-Pyrenean

Sarmes Monizec Rdixols Sl ey .__ Pyrenean thrust sheets
Marginals . Fault [NPF} Aguitaine basin A"

eogueres s H2 Escape

“ ' lv»

j.r

H2 Generation Zone

synaragenic Mesozoic 0 50 Km
preprogenic Mesozoic —

Pre-\ariscan basemant
{uppercrust)

lowver crust

Geological cross-section of the Central Pyrenees. From Munoz et al 2018




Conclusions

Natural /Gold Hydrogen (H2) exists and occurs extensively
throughout the World!

H2 is associated with the Pyrenean orogenic belt probably due to
the presence of shallow upper mantle rocks

Active H2 seepage is observed in the North Pyrenees and H2 is
observed in wells in the South Pyrenees.

The Pyrenees are unlikely to be unique.

Areas with complex collision/subduction histories and elevated upper
mantle rocks should be examined for natural H2 presence.
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SE Asia plate boundaries/sutures ‘
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Geologically SE Asia could

be a very happy hunting
ground for natural H2!

Darived from Derived _fmm Fragmented Sula

Derived from )
E Gondwana in the | Gondwana in the Australia in the Spur
Dewvonian Early Permian Late Jurassic <
Derived from Volcanic arc
- Cathaysia in the | | accreted in the E Sulure Zones lj Australian mangin
Mesozoic ) Cretaceous y




Acknowledgements

U
HELIOS

ARAGON

Permission from Helios Aragon Pte Ltd and Helios Aragdn Exploracién
SL to present this paper.

The following Helios Aragon Technical Advisors are thanked for their
many useful discussions to date:

Prof. Jon Gluyas (University of Durham, UK)

Prof. Christopher Balentine (University of Oxford,UK)
Tony Lawrence BSc (Petrophysicist)

David Seneshen BSc, PhD, (Geochemical Insight, LLC, USA)
Philip Ball BSc, MSc, PhD, MBA (University of Keele, UK)






Concept of deep H2 & Earth de-gassing

From Czado, 2023

Deep Hydrogen
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H-NAT 2022 Theory of hydrogeﬁ%ﬁc‘ﬁéﬁa rth
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Mantle wedge is key to H2 generation
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From Lefeuvre et al, 2021

3. Geological setting

® The Pyrenees is located in Southwest Europe, form an intracontinental orogen that result from the tectonic inversion of a rifted
margin system (Early Cretaceous) between the Iberian and European plates (Wang et al.. 2016).
Mauléon Arzacq Basin H2 emanations in the
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- 2e mantle rocks and
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¢ Mantle bodies were higlighted by geophysic data (Seismic, Gravimetric, Magnetic) at shallow depth: N t
- Bodies of exhumed mantle inherited from the pre-collisional hyper-extended rift system. oceanic crust.
- Mantle 1s connected to the surface by two deep rooted faults North Pyrenean Frontal Thrust (NPFT) to the north and

North Pyrenean Thrust (NPF) to the south (Wang et al.. 2016: Gomez-Romeu et al.. 2019). Tra ppmg and sea Img
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0 s mechanisms are
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etal., 2017;2018)
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H2 detection via satellite data, Ebro Basin, Spain
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Example data from
Barbastro/Monzon
Permits, Helios Aragon

(Dirt Exploration, 2021)



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

