

Unlocking Offshore CO2 Storage in the APAC region with Floating CCS Hub Developments

SEAPEX 7 March 2023

Table of Contents

⊙ Transborders Energy (TBE) and deepCStore (dCS)

• Why CCS?

- \odot CCS in the APAC region
- \odot Geoscience work-flows and challenges
- \odot CCS in Australia
- ⊙ Floating CCS Hub "CStore1"
- \odot Uniqueness of the Floating CCS Hub
- \odot Conclusion

Acknowledgements

⊙ deepC Store Limited (DCS)

○ DCS's partners (in alphabetical order)

- Add Energy Group
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- JX Nippon Oil & Gas Exploration Corporation
- Kyushu Electric Power
- Mitsui OSK Lines
- Osaka Gas and Osaka Gas Australia
- PGS
- Technip Energies
- \circ Toho Gas

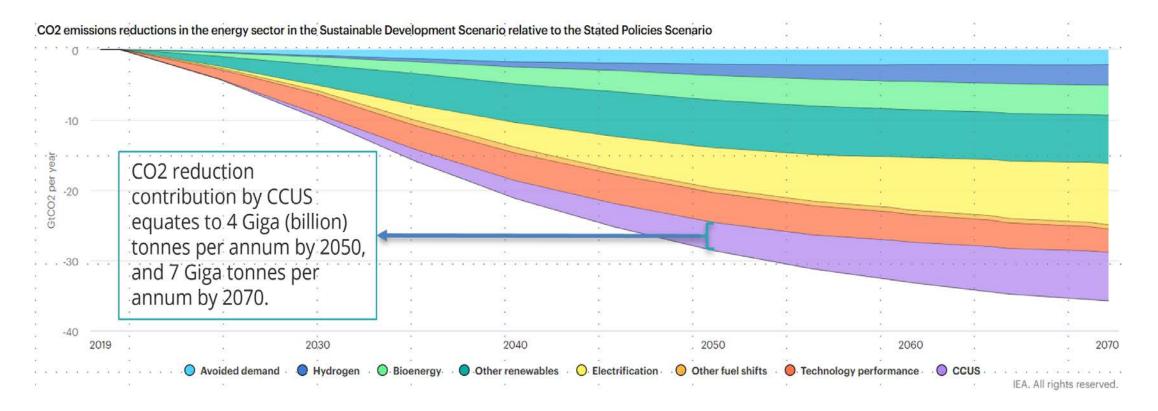
Overview of TBE & dCS

The founders of TBE & dCS realise step changes in value creation by developing & operating major capital projects for LNG and CCS, with interest to do the same for other decarbonization / CCU projects.

- Partnership with Japanese LNG buyers / investors and world class EPC, lease & operate companies
- Major capital project management & commodity marketing expertise

FLNG Solution*

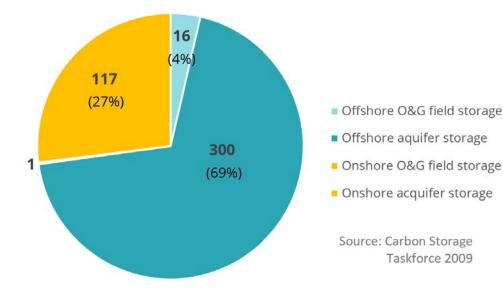
CStore1**


(Offshore floating multi-user CCS hub)

Other decarbonization / CCU projects

* FLNG is developed by TBE

** CStore1 is developed by dCS


Why CCS?

- UN's IPCC & IEA forecasts ~4 billion tonnes p.a. needs to be CCUS-ed by 2050 to meet Paris Agreement target.
- Only 27 large scale CCS facilities totaling ~37 million tonnes p.a. of CCS operational globally. Massive number of new CCS projects needed by 2050.

Why Offshore Australia & Worldwide?

CO₂ Storage Capacities in Australia (Total 434 Billion Tonnes)

Global CO₂ Storage Capacities (Total 13,000 Billion Tonnes)

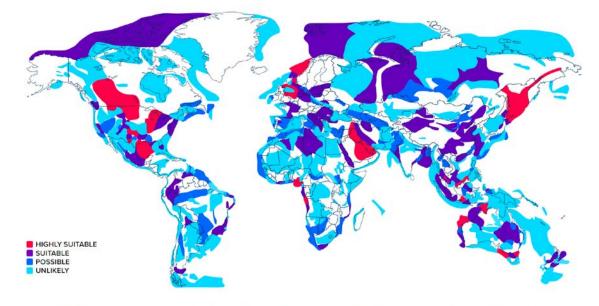


FIGURE 31 SUITABLE STORAGE REGIONS OF THE WORLD BASED ON THE GLOBAL CCS INSTITUTE'S STORAGE BASIN ASSESSMENT DATABASE

To fully unlock the CO₂ storage capacity in Australia and worldwide, the CCS industry must address the key challenge of the CO₂ storage sites and CO₂ emission sources not located in proximity.

Global Competition for Capital & Talent is Intensifying

- Aside from EU & USA, dCS considers Australia to be the most suitable jurisdiction to pursue CCS projects.
- dCS seeks further regulatory guidance to enhance Australia's CCS business environment.

dCS Assessment of CCS Business Environment Readiness

	EU	US	Australia	Asia	Japan
CO ₂ storage potential	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle / \bigcirc
CCS legislation	\bigcirc	\bigtriangleup	\bigcirc	\bigtriangleup	\bigtriangleup
Carbon pricing	0		\bigtriangleup	\bigtriangleup	\bigtriangleup
CCS project delivery capability	0	0	0	O/ \triangle	\bigtriangleup
Community understanding	\triangle / \bigcirc	\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigtriangleup

CCS Status in the Asia/Pacific Region

⊙ China

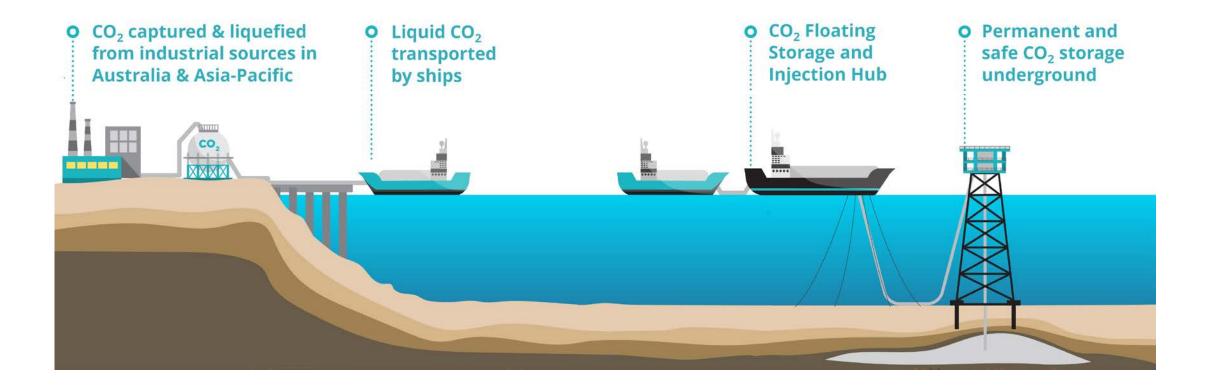
- 38 projects (mostly demonstration) operational, with CO2 capture capacity 3 MTPA (as of 2021) & includes Jilin EOR/CCS 0.6 MTPA.
- Shengli EGR/CCUS (1 MTPA) started operation Aug 2022
- Ordos coal power+CCS (1.5 MTPA) FID-ed

• Malaysia

- Kasawari CCS (~3.3 MTPA) FID-ed Nov 2022. Ops start ~2025
- Lang Lebah emerging as 2nd Gas+CCS project
- ⊙ Indonesia
 - Tangguh & Vorwata EGR/CCUS (up to 4 MTPA) approved by SKK Migas Aug 2021. FID ~2023 & Ops start ~2026/2027
- Thailand
 - Arthit Gas+CCS (~1 MTPA) announced by PTTEP Jun 2022, targeting Ops start ~2026

• Australia/Timor Leste (TL)

- Gorgon CCS (up to 4 MTPA) in operation.
- Moomba CCS (1.7 MTPA) FID-ed Nov 2021 & Ops start 2024
- Bayu-Undan (TL) CCS (up to 10 MTPA) FEED Mar 2022, targeting FID 2023



OPERATIONAL
 OPERATION

CCS Status in the Asia/Pacific Region

- Some of the larger emitting countries such as Japan and Korea do not have the optimum geological conditions for significant storage.
- These countries will seek to collect and deliver significant volumes of CO2 to host nations with more appropriate geology for successful CO2sequestration.
- o dCS has developed a process that can receive, transport and sequester 3rd party CO2 focused on sequestration in Australia.
- There is a need to establish bilateral agreements to allow for the movement of CO2 across international borders.

Floating CCS Hub - "CStore1"

CCS: 5 Stage Geoscience Evaluation Process

Site details (geographic location, infrastructure etc.)

 Interaction with natural/existing resources

- ⊙ Storage capacity
- ⊙ Injectivity potential

⊙ Containment

Most parts of the workflow are off the shelf technologies, tried and tested but certain challenges are faced

Factor	Criteria	Inputs		
Site details	Distance from source	Point location buffer		
(Is the location economically, technically,	onshore/offshore (Water depth)	Bathymetry		
socially viable?)	Reservoir depth	Depth structure map, formation tops, check datum		
· · · · · · · · · · · · · · · · · · ·	Accessibility	Jurisdiction, topography, population, wave conditions, archaeologically or environmentally significant		
	Infrastructure	Cadastral layers, pipelines, easements, lease,		
Existing resources (Will any natural resources	Known hydrocarbon resources	Shows, fields, stranded, EOR		
at the site be compromised?)	undiscovered	Active petroleum system, plays, exploration data		
at the site be compromised?)	Other	Ground water, coal, environmental, biological, geothermal, waste disposal etc		
Storage capacity	Reservoir area	Depth structure map, paleo-depo/sand presence map, lease boundary, fault boundary		
(Will the site meet the volume of the source?	Reservoir thickness (net)	Formation tops, isopach map		
(MT/Per An x N years))	Net/gross (sand%) porosity	Core, logs, Al seismic inversion, analogues		
	Temperature (depth) Pressure (depth) Salinity	Logs, pressure tests, water samples		
Injectivity	Porosity	Core, logs, AI seismic inversion, analogues		
(Do the reservoir conditions	Permeability	Core, logs, production data, LoTs, transforms		
allow for deliverability of	Thickness (sands)	Core, logs, formation tops		
source? (T/Per day/per well))	Continuity	Fault maps, reservoir maps, production & pressure injection tests		
Containment (Will the trap and seal retain the proposed volume	Trapping type* (structural, residual, geochemical)	Structural maps, salinity, Sgr, geochemical analysis, production data		
(column height) of CO2 in	Trap style*	hydrodynamic, fault interp, juxtaposition analysis, SGR		
the long term?)	Cap rock continuity	Sequence strat boundaries, paleo depo maps, isopachs, fault inter gas seeps, seismic attributes		
	Cap rock thickness	Formation tops, Vclay logs, cores		
	Cap rock properties	Lithology from core/logs, minerology, capillary entry pressure		
	Tectonic setting	Seismicity, fault reactivation, fault orientation WRT stress regime		

CCS: Geoscience Challenges

- Plume monitoring: technology, duration and cost (during and post injection)
- Pressure studies: fracture gradient studies pre and post injection
- Seal integrity: pressure, faulting and diagenesis
- Reservoir geochemistry: interaction/diagenesis of CO2 with reservoir
- ⊙ Integrity of legacy wells: who is responsible for them and integrity monitoring post injection?
- Saline injection: seismic required over large areas, containment (structural/stratigraphic),
 CO2 absorption into water

CCS: Technologies Required

• Most parts of the workflow are "off the shelf" technologies, tried and tested

- Trap integrity will be a prime focus and will require:
 - Structural definition (seismic)
 - Detailed seal studies (cores): thickness, fracture gradient, pressures
 - Diagenesis: interaction of CO2 with the reservoir chemistry
 - Detailed fault studies: seismic history/forecasts, reaction to increased pressure
- ⊙ Plume monitoring technologies are available, but cost reductions will be required especially in the geophysical space

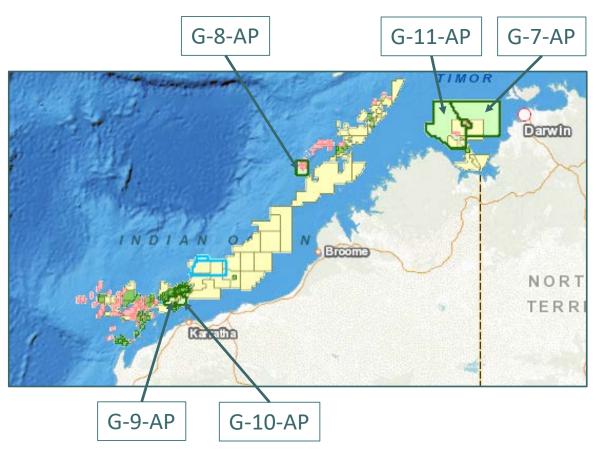

Status and Challenges for CCS in Australia

Prospective CO2 Storage Sites

- Australia has the worlds largest CCS project Gorgon
- Commonwealth legislation is in place to govern offshore CCS
- State legislation not fully in place for onshore CCS
- Successful CCS bid round held in 2022, 5 awards made under a work programme bidding system
- 2nd bid round expected in 2023
- We must address the distances between storage sites and emission sources
- ⊙ CCS needs to be made available for all industry sectors (power gen, manufacturing, mining and O&G)
- Legislation required for international transfer of CO2

Australian/Timor Leste CCUS Projects 2022 (CO2CRC)

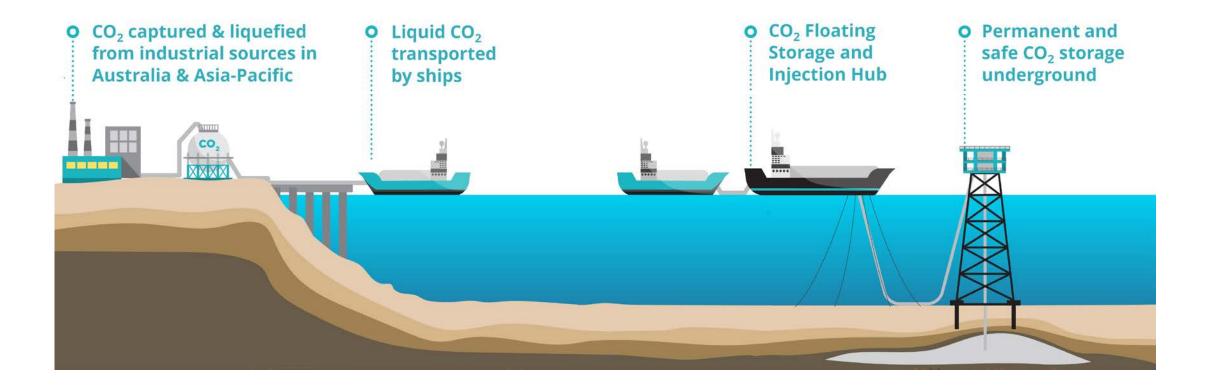
15


CCS Australia Bid Submission Work Strategy

- The work strategy should link the technical evaluation of the release area, with the work program proposed for the permit term.
- Applicants should propose a work strategy that has capability to significantly advance the understanding of the fundamental suitability determinants of potential GHG storage formations and potential GHG injection sites
- The work strategy should explain how the release area will be explored over the permit term, including how the different work program elements will investigate the fundamental suitability determinants to mature potential storage formations of the area.
- If the applicant has access to, or expects to have access to, a source (or sources) of GHG for storage, this information should also be included, along with a description of the GHG source(s), timing of when the GHG stream is expected to become available for injection, and the nature of any agreements between the applicant and capture facility(ies).
- The proposed work strategy underpinning the work program should significantly advance the understanding of the fundamental suitability determinants of potential GHG storage formations within the release area to demonstrate the existence (or otherwise) of an eligible GHG storage formation

CCS Australia Bid Submission Technical Evaluation

- Understanding of the geology and permanent storage potential of the release area.
- The technical evaluation should include, but is not limited to, a description of:
 - the data and/or studies the technical evaluation is based on
 - any geotechnical studies, seismic interpretation, mapping or any other work that has been undertaken as part of the technical evaluation
 - consideration of the geotechnical characteristics of a geological formation for the permanent storage of a GHG substance
 - consideration of data to support the spatial extent and monitoring of a potential future storage project that might be undertaken in the permit area
 - any potential storage formations mapped within the release area, including supporting material such as images, interpreted seismic sections and horizon maps, including a description of the fundamental suitability determinants that relate to the potential storage formation.
 - how the applicant proposes to use any existing data over the release area, including how this data is to be used in the proposed work program

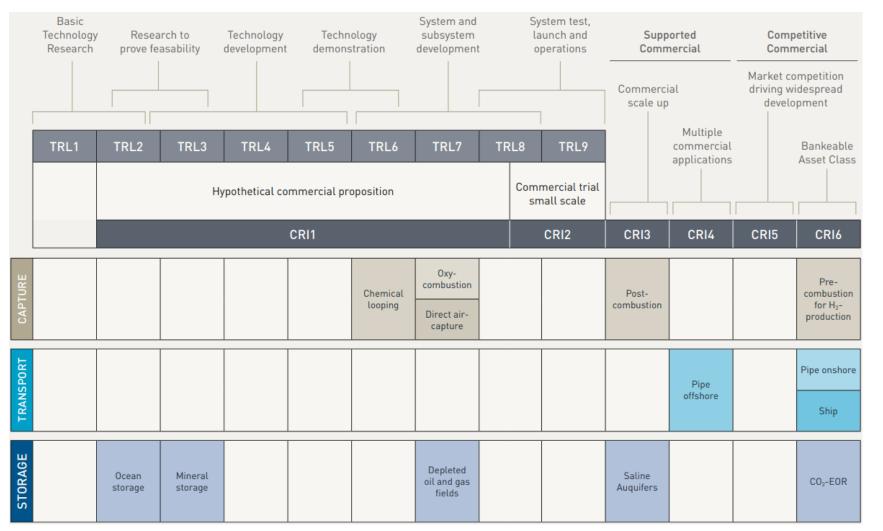

Australian CCUS Awards 2022

2022 CCUS Awards							
			A\$MM	A\$MM			
Permit	Basin	Company	Yrs 1-3	Yrs 4-6			
G-7-AP	Bonaparte	Woodside/Total/Inpex	159	6			
G-8-AP	Browse	Woodside	4.5	9.5			
G-9-AP	Carnavon	Santos/Chevron	16.35	57.33			
G-10-AP	Carnavon	Woodside/BP/Shell/MIMI/Chevron	9.86	10			
G-11-AP	Bonaparte	Santos/Chevron/Prism	81.33	45.33			

Floating CCS Hub - "CStore1"

Uniqueness of the Floating CCS Hub

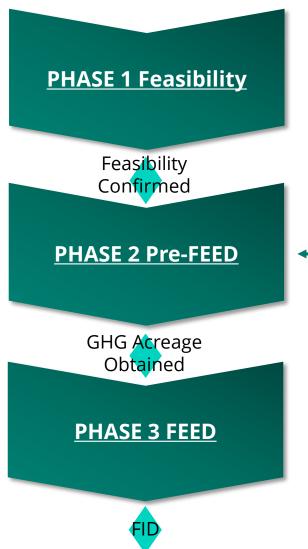
⊙ Multi-User based


• Minimal pipeline distance

• Reduced residual value risk

• Replicable, transferable and scalable

CCUS Technology is ready for Commercial Deployment



 Technical solutions throughout the CCUS value chain are advanced, based on decades of industry application.

- Areas for further improvement are:
 - CO₂ capture from exhaust (postcombustion or industrial processes)
- Large scale liquefied
 CO₂ shipping
- FSRU / FSI Hub

From "Potential for reduced costs for carbon capture, transport and storage value chains (CCS)", DNV GL, 2019. Report No.: 2019-1092, Rev. 2

CStore1 Development Timeline

- Completed Phase 1 work.
- Agreement executed with Nippon Steel Corporation (Japan's largest steel producer) to negotiate terms to offtake up to 5 MTPA of CO₂ from NSC's steelworks to CStore1
- ◎ Joint bid submitted with JX Nippon O&G for GHG acreage in offshore Australia
- Shares subscription agreement executed with PGS
- ◎ LoI executed with MOL and TEN for Pre-FEED, FEED, EPCI, O&M services for CStore1's FSI Hub
- Agreement executed with Kansai Electric Power (Japan's 2nd largest power utility) to consider developing a supply chain for capturing and transporting up to 10 MTPA of CO2 from KEPCO's power station to CStore1

– – – – – – – – – – We are here

- Complete Phase 2 Pre-FEED work
- ⊙ Obtain GHG acreage
- ⊙ Fundraise for Phase 3

dCS aims for FID by end 2026

Cost Reduction Initiatives

• Design Optimisation

• CO₂ transport conditions – affects liquefaction condition & facility material selection

	Pressure Regime	Ονεινίεω
	Low	typically 5 to 10 barg, and -55 to -40°C
<	Medium	typically 15-20 barg, and -30 to -20°C
	High	typically 70-100 barg

- CO₂ injection capacity affects total unit cost, CO₂ supply sourcing & CO₂ injection site selection
- **Manufacturing Efficiencies** Design one build many (CO₂ ships & Floating CCS Hub)
- **Reuse of facility** CO₂ ships & Floating CCS Hub

Conclusion

 \odot CCS is central to the clean energy transition in the APAC region

 Australia has strong potential to unlock significant CO₂ storage capacity and associated CCS business opportunities with a plethora of injection sites.

 Subsurface processes are tried and tested. CCS introduces new considerations, including its interface with potential overlapping hydrocarbon play.

 Floating CCS Hub development concept can address the key challenge of proximity between CO₂ storage sites and CO₂ emitter sources.

 Bilateral agreements are required to allow the free transfer of CO2 from the "emitters" to the "sequesters"

Thank you

deepC Store Limited ABN: 26 653 059 164 Address: 1008 Hay Street | Perth WA 0000 | Australia deepcstore.com